搖一搖
我應該多久更換一次機油?
對於大多數街道行駛的保時捷車型,我們建議換油間隔為6個月或5,000英里。
由於油系統體積的減少,較舊的風冷模型應限制在3個月或3,000英里以內。老式的風冷大眾車型也是如此。
每次賽事結束後,專用軌道車都應更換機油。混合使用的街道/田徑用車應在比賽中使用賽車油,並在換成街道油後立即更換。
冬季存放的車輛在存放之前應先換油。應該添加諸如Driven Storage Defender之類的產品,用於燃油系統和機油系統。在存儲過程中,請勿啟動並讓引擎閒置。最好讓它處於休眠狀態,直到您將汽車從存儲中取出並有機會長時間駕駛汽車並使機油達到最高工作溫度為止。
![[公開道歉]台灣(製?)機車必須1000km換機油1051](static/image/smiley/default/lol.gif)
爽就換。
5000英哩 大概是8000公里。跟我抓得差不多。
我們一直被問到可以採取哪些措施來保護您的發動機。大多數人都知道或聽說過ZDDP和Moly,但許多人不知道這些添加劑的作用或作用方式。
二烷基二硫代磷酸鋅(ZDDP)是路博潤於1941年發明的一種油添加劑。
在潤滑膜上添加ZDDP的方法是在摩擦表面上形成保護層。更具體地,玻璃狀基於磷酸鹽的摩擦膜形成並提供邊界層保護以防止塑性變形。膜的形成不需要摩擦接觸,但是表面之間的剪切應力可使膜形成更快。ZDDP也可以在鋁或什至陶瓷,矽等有色金屬表面上形成,或在DLC塗層上形成。然而,在低於25℃的溫度下,ZDDP的形成較慢。在高於150°C的高溫下,ZDDP可以在沒有摩擦的情況下反反應形成熱膜。
儘管可能存在促進ZDDP摩擦膜形成的表面分子相互作用,但據信在滑動和滾動滑動接觸過程中,剪切應力而不是施加在這些表面上的壓力會增加溫度或“閃蒸溫度”。接觸點,導致成膜。薄膜開始形成後,由於其產生的耐磨墊的粗糙度,ZDDP摩擦膜將繼續發展。因此,眾所周知,ZDDP薄膜會在混合潤滑條件下增加摩擦,因此需要另一種油添加劑,摩擦改進劑減少摩擦。
ZDDP提供磨損保護,並在MoS2膜形成的起始過程中發揮關鍵作用。
ZDDP和鉬之間的協同作用是眾所周知的。鉬是一種極壓添加劑,可以降低高負荷下的摩擦。像ZDDP一樣,摩擦改性劑MoDTC形成MoS2的過程是通過剪切應力引起的熱活化來促進的。與ZDDP不同,溫度在鉬膜的形成中不發揮重要作用。Moly創造了可以在含鐵和非含鐵表面上形成的“玻璃板”。有趣的是,由ZDDP形成的摩擦膜的粗糙度提供了生成最終的MoS2膜所需的所需壓力和剪切應力,從而使MoDTC摩擦改性劑即使在光滑的表面上也能反應。MoS2的玻璃板具有較低的層內強度,可通過降低所得摩擦膜的剪切強度來有效減少摩擦。
We get asked all the time about what can be done to help protect your engine. Most people know of or have heard about ZDDP and Moly, but many don't know what these additives do or how they work.
Zinc dialkyldithiophosphate, better known as ZDDP, is an oil additive invented by Lubrizol in 1941.
Adding ZDDP to a lubricating film works by forming a protective barrier on rubbing surfaces. More specifically, a glassy phosphate-based tribofilm forms and provides boundary layer protection to prevent plastic deformation. Film formation doesn't require rubbing contact, but the shear stress between surfaces allow for films to form faster. ZDDP can also form on non-ferrous surfaces like aluminum and even ceramics, silicon, or on DLC coatings. However, at temperatures below 25C, ZDDP are slower to form. At elevated temperatures above 150C, ZDDP can react to form thermal films in the absence of rubbing.
Although there might be a surface-molecule interaction that promotes formation of a ZDDP tribofilms, it is believed that the shear stress during sliding and rolling-sliding contacts rather than pressure applied to these surfaces increases the temperature, or "flash temperature", at the point of contact, leading to film formation. Once the film begins forming, ZDDP tribofilms will continue to develop due to the roughness of the anti-wear pads it creates.. As a result, ZDDP films are known to increase friction in mixed lubrication conditions, requiring another oil additive, friction modifiers, to reduce friction.
ZDDP provides wear protection and plays a key role in the initiation of the formation of MoS2 films.
The synergy between ZDDP and moly is well known. Moly is an extreme pressure additive that can provide a reduction of friction at high loads. The formation of MoS2 from the friction modifier MoDTC, like ZDDP, is promoted through thermal activation caused by shear stress. Unlike with ZDDP, temperature does not play a significant part in formation of moly films. Moly creates "glassy plates" that can form on ferrous and non-ferrous surfaces. Interestingly, the roughness of the tribofilm formed by ZDDP provides the required pressure and shear stress that is required to create the resulting MoS2 film, allowing the MoDTC friction modifier to react on even smooth surfaces. MoS2's glassy plates have lower intra-layer strength, effectively reducing friction by decreasing the shear strength of resulting tribofilms.
本文最後由 pompom 於 2020-11-6 16:14 編輯
|